

Canadian Journal of Health Technologies September 2024 Volume 4 Issue 9

CADTH Health Technology Review

Drug Shortages and Patient Harms

Technology Review

Key Messages

What Is the Issue?

- Drug shortages are a global issue with complex dynamics. Shortages can occur because of disruption at any point along the drug supply chain. Several strategies are used in Canada to prevent or alleviate the effects of drug shortages, including mandatory reporting by drug manufacturers.
- An understanding of the amount and types of real or potential harms caused to patients can inform policy decisions around drug shortage management and prevention.

What Did We Do?

- We searched for literature providing evidence on patient outcomes associated with supply chain disruptions of pharmaceuticals and vaccines. An information specialist conducted a search of peerreviewed literature sources published between January 1, 2003, and September 13, 2023.
- Documents were excluded if the objective was to investigate the potential effects of a drug shortage in the absence of an actual drug shortage or if the outcomes were not direct patient harms.

What Did We Find?

- One scoping review and 33 nonrandomized studies were identified that evaluated patient outcomes associated with supply chain disruptions of pharmaceuticals and vaccines.
- We identified a wide variety of drug classes experiencing shortages. The most frequently reported shortages were anesthetics, oncology drugs, vaccines, drugs for the treatment of COVID-19, antimicrobials, and small-volume parenteral solutions.
- Most of the included primary studies concluded that the replacement drug or protocol was a safe or acceptable alternative to the shortage drug. The subset of primary studies that concluded that the replacement drug or protocol was not a safe or acceptable alternative to the shortage drug reported worse outcomes in health system use (including length of hospital stay), adverse events, disease progression, and mortality.

What Does This Mean?

• Drug shortages have the potential to cause harm to patients and some drug shortages may have a greater impact on patients than others. The

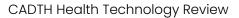
Key Messages

ability to predict which drugs could cause the greatest harm during a supply disruption would be a great benefit for future planning.

• The diversity of drugs experiencing shortages and their associated harms emphasizes that decision-makers may need to take a case-by-case approach when developing policies meant to lessen the impact of drug shortages.

Table of Contents

Context and Policy Issues	6
What Is the Problem?	
What Is the Current Practice?	
Why Is It Important to Do This Review?	7
Objective	7
Research Question	7
Methods	7
Literature Search Methods	7
Selection Criteria and Summary Methods	
Exclusion Criteria	8
Overall Summary	8
Quantity of Research Available	
Summary of Study Characteristics	9
Summary of Findings	10
Conclusions	28
References	29
Appendix 1: Selection of Included Studies	31
Appendix 2: References of Potential Interest	32



List of Tables

Table 1: Selection Criteria	. 9
Table 2: Summary of Included Scoping Review — Phuong et al. (2019) ⁶	12
Table 3: Summary of Included Nonrandomized Studies by Clinical Indication	16

List of Figures

igure 1: Selection of Included Studies
--

Context and Policy Issues

What Is the Problem?

Drug shortages are a global issue with complex dynamics. Between 2022 and 2023, more than 2,700 drug shortages were reported to Health Canada, lasting an average of 98 days.¹ Of these, 34 were considered high impact — shortages with the greatest potential consequences to people and health care systems (e.g., no therapeutic alternatives available).^{1,2}

There are multiple steps along the drug supply chain, including:

- drug development and regulatory approval
- manufacturing
- purchase and distribution
- delivery to hospitals, pharmacies, and patients.³

Interruptions to any of these phases can cause a shortage. For example:

- good manufacturing practices noncompliance leading to recalls
- nonprofitable drugs leading to decisions to cease production
- stockpiling of medication
- external factors, such as a natural disaster.^{3,4}

In addition, weak points in the supply chain, such as relying on the supply of drugs from a single source or not having protocols in place to respond to increases in demand, can also cause or worsen existing drug shortages.^{3,4}

What Is the Current Practice?

Strategies currently used in Canada to attempt to prevent or alleviate drug shortages include:

- an expedited drug review process to accelerate Health Canada approval of substitute drugs in urgent circumstances
- drug manufacturing quality assurance protocols
- the development of ethical frameworks for resource allocation
- compounding drugs
- rationing protocols at the hospital and pharmacy level.³

Furthermore, mandated reporting of drug shortages went into effect in 2017,² Drug manufacturers are required to report anticipated shortages or discontinuations, ideally 6 months in advance, to allow time to put mitigation plans into place. Manufacturers are also required to report actual shortages as soon as they are aware of them.²

Why Is It Important to Do This Review?

People can experience clinical harm as a result of drug shortages. This can take several forms:

- inadequate treatment or management of health conditions
- withdrawal-related side effects
- adverse or safety events associated with replacement drugs
- medication errors.⁴

Some drugs have the potential for much greater patient harm if they become difficult to obtain. For example, shortages of drugs with life-saving benefits or strict dosing schedules might have more impact on patient outcomes, especially if there are no alternative options available.^{2,4}

This report is the first in a series of CADTH-published initiatives that aims to emphasize potential priority medications and to ultimately support decision-making during drug shortages.

Objective

The purpose of this report is to summarize the evidence on patient outcomes associated with supply chain disruptions of pharmaceuticals and vaccines.

Research Question

What is the evidence on patient outcomes associated with supply chain disruptions of pharmaceuticals and vaccines?

Methods

Literature Search Methods

An information specialist conducted a literature search on key resources, including MEDLINE and the Cochrane Database of Systematic Reviews. The search approach was customized to retrieve a limited set of results, balancing comprehensiveness with relevancy. The search strategy comprised both controlled vocabulary, such as the National Library of Medicine's MeSH (Medical Subject Headings), and keywords. Search concepts were developed based on the elements of the research questions and selection criteria. The main search concept was drug shortages. CADTH-developed search filters were applied to limit retrieval to health technology assessments, systematic reviews, meta-analyses, or indirect treatment comparisons; any types of clinical trials or observational studies; real-world evidence using routinely collected data; or to the context in Canada. The search was completed on September 13, 2023, and limited to documents published since January 1, 2003.

Selection Criteria and Summary Methods

One reviewer screened citations and selected studies. In the first level of screening, titles and abstracts were reviewed and potentially relevant articles were retrieved and assessed for inclusion. The final selection of full-text articles was based on the inclusion criteria presented in <u>Table 1</u>. Information from the relevant studies was extracted into summary tables and organized into broad clinical indication categories by 1 reviewer. Data were extracted on the study characteristics; shortage drug and its substitute, if applicable; findings that related to direct patient harms; and overall conclusion. Outcome results and their direction of effect were briefly summarized as reported by the study's authors and categorized into the following: no difference, worse, improved, or mixed between groups (e.g., in studies with multiple comparator groups, an outcome may improve in 1 group but worsen in another). No formal critical appraisal (e.g., risk of bias assessment) of the included studies was conducted.

Exclusion Criteria

Articles were excluded if they did not meet the selection criteria outlined in <u>Table 1</u>, they were duplicate publications, or were published before 2003.

Studies were excluded if:

- the natural effects of a drug shortage could not be observed because of the study design (e.g., randomized controlled trial)
- the shortage product was a multivitamin, supplement, homeopathic medication, or device
- the purpose of the study was to investigate the potential effects of a drug shortage in the absence of an actual drug shortage (e.g., anticipatory)
- the primary or secondary outcomes were not direct patient harms (e.g., studies that reported treatment delays without describing a direct measurable effect to patients were excluded).

Because of the large volume of potentially relevant articles identified for full-text review, those published before January 1, 2018, were excluded. A list of the articles published before 2018 that were identified for full-text review, but not screened for inclusion and exclusion criteria, can be found in <u>Appendix 2</u>.

Overall Summary

Quantity of Research Available

A total of 1,871 citations were identified in the literature search. Following screening of titles and abstracts, 1,742 citations were excluded and 129 potentially relevant reports from the electronic search were retrieved for full-text review. Of these potentially relevant articles, 95 publications were excluded for various reasons, and 34 publications met the inclusion criteria and were included in this report. These comprised 1 scoping review (SR) and 33 nonrandomized studies (NRSs).

Table 1: Selection Criteria

Criteria	Description
Population	General population
Concept	Supply chain disruptions of pharmaceuticals and vaccines
Outcomes	Patient harms (e.g., mortality, emergency department visits, hospitalization rates, adverse events)
Study designs	Health technology assessments, systematic reviews, scoping reviews, nonrandomized studies

<u>Appendix 1</u> presents the PRISMA⁵ flow chart of the study selection. Additional references of potential interest are provided in <u>Appendix 2</u>.

Summary of Study Characteristics

The SR by Phuong et al. (2019)⁶ included 40 studies. Sixteen primary studies published between 2006 and 2017 met the inclusion criteria for this report. Of these, 3 were prospective cohort studies and 13 were retrospective cohort studies. The authors of the SR were from Australia.⁶

Of the 16 relevant primary studies in the SR, 4 were conducted in a surgical setting, 2 in a nonspecific hospital setting, 1 in the intensive care unit, 1 in an air medical setting, and 8 did not specify a setting.⁶

The 33 included primary clinical studies comprised 1 registry study,⁷ 5 prospective cohort studies,⁸⁻¹² and 27 retrospective cohort studies.¹³⁻³⁹ Two studies were published as research letters.^{8,30} The studies were published between 2018 and 2023. The primary clinical studies were conducted by authors from Australia,^{11,12} Brazil,²³ Canada,^{13,20,30,33} the Democratic Republic of the Congo,³⁸ France,^{7,14,27} Japan,⁸ the Netherlands,³⁹ and the US.^{9,10,15-19,21,22,24-26,28,29,31,32,34-37}

Twenty of the included primary studies compared outcomes between the shortage drug and its substitute before and during a drug shortage period.^{13-22,24,26,27,31-35,37,39} Of these, 3 studies had at least 1 substitute drug group that had a supply disruption and was further compared to an additional substitute drug group.^{14,34,39} In Cole et al. (2021), the intervention and comparator groups flipped partway through when supply of the shortage drug resumed, and the substitute drug went into shortage.¹⁰ In Li and Cimino (2020), the study occurred during the drug shortage period and compared patients who continued receiving the shortage drug to those who switched to a substitute drug.²⁸ In van Langenberg et al. (2020), for long-term outcomes, the intervention group was the substitute drug and was compared to patients who switched back to the shortage drug when supply resumed.¹¹ In this same study, there was no comparator group for short-term outcomes.¹¹ Nine studies did not have a comparator group.^{8,9,12,23,25,29,30,36,38} The registry study aimed to identify adverse drug reactions related to drug shortages and describe the types of drugs and harms involved.⁷

Nine of the included primary studies were conducted in a nonspecific hospital setting,^{13,18,22,24,25,29,35,36,39} 6 in the emergency department (ED),^{10,15,26,32-34} 5 in the intensive care unit,^{17,20,21,27,31} 5 in the community,^{8,9,12,30,38} 3 in a surgical setting,^{16,19,37} 3 in a hospital outpatient setting,^{11,14,28} and 1 in dialysis clinics.²³

Summary of Findings

The 16 relevant primary studies from the SR are summarized in <u>Table 2</u>. The registry study and 32 NRSs are summarized in <u>Table 3</u>.

There was considerable variability in the types of drugs experiencing shortages. Broadly defined categories by clinical indication were identified as follows:

- anesthetic, analgesic, or sedative medications (SR: 3 studies; NRS: 7 studies)^{6,10,17-19,26,34,37}
- oncology drugs and drugs used in conjunction with oncology drugs (SR: 4 studies; NRS: 5 studies)^{6,13,14,28,35,36}
- vaccines (NRS: 4 studies)^{8,9,12,38}
- antimicrobials, including antibiotics and antivirals, and drugs used in conjunction with antimicrobials (SR: 3 studies; NRS: 3 studies)^{6,22,31,33}
- drugs specific to the treatment or management of COVID-19 (NRS: 3 studies)^{20,27,39}
- drugs that did not fit into the previously mentioned categories (SR: 6 studies; NRS: 6 studies)^{6,11,16,21,23,30,32}
- nondrug, specifically, small-volume parenteral solutions, which are used to administer IV drugs (NRS: 4 studies).^{15,24,25,29}

Strategies used to manage drug shortages:

- alternative drug (SR: 13 studies; NRS: 14 studies)^{6,8-14,16,26,30-32,34,37}
- dose-sparing strategies (e.g., fixed dose) (SR: 1 study; NRS: 3 studies)^{6,20,22,38}
- alternative route of administration (e.g., oral formulations) (NRS: 4 studies)^{18,21,35,36}
- alternative method of administration (e.g., infusion technique) (SR: 1 study; NRS: 4 studies)^{6,15,24,25,29}
- none (e.g., no suitable replacement available) (SR: 1 study; NRS: 2 studies)^{6,23,33}
- a combination of the previously mentioned categories, either at the same time or in sequence (NRS: 5 studies).^{17,19,27,28,39}

Outcomes related to patient harms and the direction of effect during a drug shortage period:

- Mortality: no difference (SR: 5 studies; NRS: 9 studies);^{6,11,15-17,21,22,24,27,31} worse (SR: 1 study; NRS: 1 study);^{6,20} improved (NRS: 1 study);¹³ mixed results between groups (NRS: 1 study)³⁹
- Hospital admission: no difference (NRS: 1 study);³⁰ worse (NRS: 1 study);¹¹ mixed results between groups (NRS: 1 study)³⁴
- Intensive care unit (ICU) admission: no difference (SR: 1 study; NRS 1 study);^{6,34} worse (NRS: 2 studies)^{13,39}
- ED visit: no difference (NRS: 2 studies);18,37 worse (NRS: 1 study)30
- Hospital readmission: no difference (NRS: 1 study);³³ improved (NRS: 2 studies)^{18,24}
- Hospital length of stay (LOS): no difference (SR: 3 studies; NRS: 7 studies);^{6,17,18,20,22,24,31,35} worse (NRS: 1 study);¹³ mixed results between groups (NRS: 2 studies)^{34,39}

- ICU LOS: no difference (NRS: 4 studies)^{17,20,21,34}
- ED LOS: mixed results between groups (NRS: 2 studies)^{10,34}
- Postanesthetic care unit LOS: worse (NRS: 1 study)³⁷
- Adverse events: no difference (SR: 8 studies; NRS: 17 studies);^{6,8,9,12,14-16,25-29,31,33-36,38} worse in at least 1 safety outcome (SR: 2 studies; NRS: 5 studies);^{6,11,13,19,24,37} improved in at least 1 safety outcome (SR: 2 studies; NRS: 1 study);^{6,32} mixed results between groups (NRS: 1 study)¹⁰
- Disease progression: no difference (SR: 1 study; NRS: 2 studies);^{6,27,28} worse (SR: 2 studies; NRS: 3 studies);^{6,11,23,31} improved (NRS: 1 study)¹³
- Duration of mechanical ventilation: no difference (SR: 1 study; NRS: 2 studies);^{6,17,20} worse (SR: 1 study);⁶ improved (NRS: 1 study)²¹
- Pain: no difference (NRS: 1 study)¹⁷

Primary study author's conclusions:

- The replacement drug or protocol was a **safe** or acceptable alternative to the shortage drug (NRS: 26 studies).^{8-10,12-18,20-22,24-30,32-36,38}
- The replacement drug or protocol was considered **not safe** or at increased risk of harmful outcomes (NRS: 6 studies).^{11,19,23,31,37,39} The shortage drug class differed for all 6 studies^{11,19,23,31,37,39} and was compared to an alternative drug or protocol in 5 studies.^{11,19,31,37,39} There was no suitable replacement therapy available in 1 study.²³ For these 6 studies, worsening direct patient harms were reported for the following outcome categories: health system use (3 studies),^{11,37,39} adverse events (3 studies),^{11,19,37} and disease progression (3 studies).^{11,23,31} Swets et al. (2023) reported lower survival in 2 of the 3 replacement drug groups compared to the shortage drug.³⁹

Context in Canada

Four primary studies investigated drug shortages occurring in Canada.^{13,20,30,33} The shortage drugs were carmustine, tocilizumab, probenecid (in conjunction with an antibiotic), and generic valsartan.^{13,20,30,33} Lachance et al. (2023) reported that the alternative drug, bendamustine, had worse outcomes in adverse events and ICU admissions and better outcomes in survival and disease progression.¹³ Stukas et al. (2022) reported that the decreased dose of tocilizumab had worse outcomes in mortality, but no difference in hospital LOS, ICU LOS, or duration of mechanical ventilation.²⁰ Landry et al. (2019) reported that using the antibiotic without addition of the shortage drug had no difference in readmissions or adverse events.³³ McAlister and Youngson (2020) reported worse outcomes for ED and outpatient visits, but no difference in hospital admissions.³⁰ Three studies concluded that the replacement drug or protocol was an acceptable alternative to the shortage drug.^{13,20,33} The fourth study concluded that there were no long-term adverse effects because of the shortage.³⁰

Table 2: Summary of Included Scoping Review – Phuong et al. (2019)⁶

Study citation	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results		
	Anesthetics					
Romito B, et al. Hosp Pharm. 2015;50(9):798- 805. US	Study design: retrospective cohort Population: NR Setting: surgery	Drug class: general anesthetic, systemic Shortage: propofol Replacement: alternative agents	Mortality	No difference		
Price B, et al. Am J Emerg Med. 2013;31(7):1124-32. US	Study design: retrospective cohort Population: people requiring endotracheal intubation Setting: air medical	Drug class: general anesthetic, systemic Shortage: etomidate Replacement: ketamine	Adverse drug reaction	No difference		
			Hemodynamics	No difference		
Roberts R, et al. Crit Care Med. 2012;40(2):406-11. US	Study design: retrospective cohort Population: noncardiac patients in the ICU Setting: ICU	Drug class: general anesthetic, systemic Shortage: propofol Replacement: alternative anesthetic drugs	Duration of mechanical ventilation	Increased with alternative anesthetic drugs (NSS)		
		Oncology drugs and adjuncts	5			
Duan F, et al. Radiology. 2016;278(2):612-21. US	Study design: prospective cohort Population: people undergoing transcatheter arterial chemoembolization for hepatocellular carcinoma Setting: NR	Drug class: NR Shortage: NR Replacement: alternative vehicles of oncology medications	Adverse drug reaction	No difference		
Berger JL, et al. Onco Targets Ther. 2014;7:1409- 13. US	Study design: retrospective cohort Population: people with recurrent epithelial ovarian carcinoma Setting: NR	Drug class: antineoplastic Shortage: pegylated liposomal doxorubicin (Doxil) Replacement: non-FDA- approved second-generation liposomal doxorubicin	Treatment response	No patients had a complete or partial response with alternative therapy		

Study citation	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
Nickel RS, et al. Pediatr Blood Cancer. 2014;61(5):810-4. US	Study design: retrospective cohort Population: people with newly diagnosed lymphoblastic leukemia and lymphoma Setting: hospital	Drug class: antineoplastic Shortage: daunorubicin Replacement: mitoxantrone	Mortality	No difference
			ICU admission	No difference
			Adverse events: fever, bacteremia, invasive fungal disease	No difference
			Hospital LOS	No difference
Trifilio S, et al. Leuk Res. 2013;37(8):868-71. US	Study design: retrospective cohort Population: people with acute myeloid leukemia Setting: NR	Drug class: antineoplastic Shortage: daunorubicin Replacement: idarubicin	Mortality	No difference
			Adverse drug reaction	No difference
			Complete remission	No difference
		Antimicrobials and adjuncts		
McLaughlin MM, et al. Infect Dis Ther. 2017;6(2):259-64. US	Study design: retrospective cohort Population: NR Setting: NR	Drug class: antiviral Shortage: IV acyclovir Replacement: high-dose oral valacyclovir	Adverse drug reaction	40% of patients experienced at least 1 adverse drug reaction to high-dose oral valacyclovir
Dilworth TJ, et al. J Manag Care Pharm. 2014;20(12):1246-54. US	Study design: retrospective cohort Population: people with HIV Pneumocystis jirovecii pneumonia Setting: hospital	Drug class: sulfonamide Shortage: IV trimethoprim- sulfamethoxazole Replacement: alternative agents	Mortality	Equal number of deaths in both groups
			Clinical status	Worsened in the shortage group
			Treatment failure	No difference
			Adverse events	No difference

Study citation	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
			Hospital LOS	No difference
Mendez MN, et al. Pharmacotherapy. 2006;26(1):61-7. US	Study design: retrospective cohort Population: NR Setting: NR	Drug class: penicillin; beta- lactamase inhibitor Shortage: piperacillin- tazobactam Replacement: alternative antimicrobials	Adverse drug reaction	 No difference in vancomycin- resistant enterococci rates Decrease in <i>Clostridium difficile</i> infections with alternative antimicrobials
		Other		
Vail E, et al. JAMA. 2017;317(14):1433-42. US	Study design: retrospective cohort Population: people with septic shock Setting: NR	Drug class: vasopressor Shortage: norepinephrine Replacement: alternative vasopressors	Mortality	Increased with alternative vasopressors
Blaine KP, et al. Clin Anesth. 2016;35:516-23. US	Study design: retrospective cohort Population: people undergoing cardiac surgery Setting: surgery	Drug class: antifibrinolytic Shortage: epsilon-aminocaproic acid Replacement: tranexamic acid	Adverse drug reaction	Decreased with tranexamic acid
Cho S, et al. nn Pharmacother. 2016;50(9):718-24. US	Study design: retrospective cohort Population: people with acute subarachnoid hemorrhage Setting: NR	Drug class: calcium channel blocker Shortage: nimodipine Replacement: shortened course of treatment	Mortality	No difference
			Adverse drug reaction	No difference
			Hospital LOS	No difference
			Duration of mechanical ventilation	No difference
			Neurologic outcomes	No difference

Study citation	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
Malone C, et al. Ulster Med J. 2016;85(3):174-7. UK	Study design: prospective cohort Population: people undergoing nonemergent caesarean section Setting: surgery	Drug class: uterotonic Shortage: IV oxytocin Replacement: Syntometrine	Transfusions, blood loss	No difference
			Adverse drug reaction	Increased intraoperative antiemetics with Syntometrine
Ladha KS, et al. Anesth Analg. 2015;121(2):404-9. US	Study design: retrospective cohort Population: NR Setting: surgery	Drug class: vasopressor Shortage: pharmacy-prepared ephedrine syringes Replacement: alternative vasopressors	Hemodynamics	No difference
Goldblatt J, et al. Blood Cells Mol Dis. 2011;46(1):107-10. Australia	Study design: prospective cohort Population: people with Gaucher disease Setting: NR	Drug class: metabolic enzyme Shortage: imiglucerase Replacement: None	Clinical complications	Most patients had no significant clinical complications

ICU = intensive care unit; LOS = length of stay; NR = not reported; NSS = not statistically significant.

Table 3: Summary of Included Nonrandomized Studies by Clinical Indication

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
		General		
Borneau-Martin et al. (2023), ⁷ France	Study design: registry Population: drug shortage-related ADRs reported to a pharmacovigilance database (N = 462) Setting: any	Drug class: any Most frequently reported: nervous system drugs, cardiovascular drugs, anti- infectives for systemic use; replacement drug used in 96% of reported ADR cases	Number of ADR cases related to drug shortages	Increased at a greater rate than total reported ADRs over the study period
			ADRs	84% of cases related to drug shortages
			Serious ADRs: hospitalization, medically significant or life- threatening events, death	46% of cases related to drug shortages
			Death	2% of cases related to drug shortages
			Disease worsening	16% of cases related to drug shortages
			Medication errors	11% of cases related to drug shortages
		Anesthetics, analgesics, and seda	atives	
John et al. (2022), ¹⁷ US	Study design: retrospective cohort Population: adults receiving mechanical ventilation (N = 100) Setting: ICU	Drug class: opioid analgesic Shortage: IV opioids Replacement: oral opioids or alternative nonopioid drugs	Hospital LOS	No difference
			ICU LOS	No difference
			Mortality	No difference
			Duration of mechanical ventilation	No difference

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
			Pain level	No difference
US Popu dise	Study design: retrospective cohort Population: adults with sickle cell disease (N = 89) Setting: hospital	Drug class: opioid analgesic Shortage: IV opioid medications Replacement: oral opioids	Hospital LOS	No difference
			Readmission	Fewer 30-day readmissions during the shortage period
			ED visits	No difference
Rodriguez-Monguio et al. (2022), ¹⁹ US	Study design: retrospective cohort Population: adults with cancer (N = 3,906) Setting: surgery	Drug class: Opioid analgesic Shortage: any opioid analgesic in shortage during the study period Replacement: any, including drug substitutions, dose conversions, and alternative administration routes	Adverse event: post-operative hypoxemia	Increased in patients exposed to opioid shortages (NSS)
			Adverse event: post-operative hypoxemia reversed by IV naloxone	Increased in patients exposed to opioid shortages (NSS)
Cole et al. (2021), ¹⁰ US	Study design: prospective cohort Population: patients with acute agitation (N = 1,257) Setting: ED	Drug class: antipsychotic Shortage: droperidol; olanzapine Replacement: droperidol; olanzapine	ED LOS	Longer ED LOS in the olanzapine group
			Adverse event: extrapyramidal	Extrapyramidal adverse events were more common with droperidol
			Adverse events: cardiovascular, respiratory, intubation	No difference

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
Farrell et al. (2020),26Study design: retrospective cohortUSPopulation: adults requiring rapid sequence intubation (N = 82) Setting: ED	Drug class: general anesthetic, systemic Shortage: etomidate Replacement: ketamine; methohexital	Complications: dental trauma, airway trauma, esophageal intubation, new onset seizures	No occurrences in either group	
			Complications: aspiration	Two aspirations occurred in the etomidate group
Nelson et al. (2019), ³⁴ US	Study design: retrospective cohort Population: adults with acute alcohol withdrawal syndrome (N = 300) Setting: ED	Drug class: benzodiazepine Shortage: IV diazepam; IV lorazepam Replacement: IV lorazepam with IV phenobarbital; IV phenobarbital alone	ICU admission	No difference
			Overall admission	 Increased admission rates with phenobarbital only compared to diazepam No difference between the other groups
		LOS, total	LOS was shortest with lorazepam + phenobarbital compared to diazepam and phenobarbital only	
			LOS, ED	ED LOS was shortest with diazepam compared to lorazepam + phenobarbital and phenobarbital only
			LOS, floor and ICU	No difference
			Intubation	No difference
Neff et al. (2018), ³⁷ US	Study design: retrospective cohort Population: adults undergoing general	Drug class: general anesthetic, systemic Shortage: propofol	Postoperative nausea and vomiting	Greater incidence of postoperative nausea and vomiting during the propofol shortage period

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
	anesthesia (N = 2,090) Setting : surgery	Replacement: inhaled volatile drugs		
			PACU LOS	Longer duration of stay in the PACU during the propofol shortage period
			Readmit to ED	No difference
		Oncology drugs and adjunct	S	
Lachance et al. (2023), ¹³ Canada	Study design: retrospective cohort Population: patients undergoing autologous stem cell transplant for relapsed-refractory lymphoma (N = 227) Setting: hospital	Drug class: antineoplastic Shortage: carmustine Replacement: bendamustine	Febrile neutropenia	No difference
			Mucositis	Increased development of grade ≥ 3 mucositis with bendamustine
			Toxicity: cardiac, pulmonary, liver	No difference
			Toxicity: renal	Increased with bendamustine
			ICU admission	Increased with bendamustine
			Transfusion	 Increased need for platelet transfusion with bendamustine
				 Decreased need for red blood cell transfusion with bendamustine
			Hospital LOS	Increased with bendamustine
			Mortality	 No early treatment-related deaths associated with bendamustine
				 Better overall survival with bendamustine

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
			Disease progression	Better progression-free survival with bendamustine
Strobbe et al. (2023), ¹⁴ France	Study design: retrospective cohort Population: patients receiving paclitaxel-based chemotherapy (N = 831) Setting: outpatient	Drug class: H2A Shortage: ranitidine; famotidine Replacement: alternative H2A (famotidine); no H2A (H1A, corticosteroid, or combined H1A and corticosteroid)	Hypersensitivity reactions	No difference
Li and Cimino (2020), ²⁸ US	Study design: retrospective cohort Population: patients receiving chemotherapy (N = 22) Setting: outpatient	Drug class: antineoplastic Shortage: etoposide injection Replacement: alternative therapy (e.g., oral etopisode or etopophos injection)	Adverse drug events	No difference
			Disease progression	No difference
			Medication errors	None recorded
Roy et al. (2019), ³⁵ US	Study design: retrospective cohort Population: adults receiving HDTMX as inpatients (N = 18) Setting: hospital	Drug class: alkalinizing drugs Shortage: IV sodium bicarbonate and IV sodium acetate Replacement: oral sodium bicarbonate with oral or IV acetazolamide as needed	Hospital LOS	No difference
			Adverse events: acute kidney injury, hepatotoxicity, myelosuppression	No difference
			Adverse events: pneumonitis, mucositis, rash	No occurrences in either group
Visage et al. (2019), ³⁶ US	Study design: retrospective cohort, uncontrolled Population: pediatric patients	Drug class: alkalinizing drug Shortage: IV sodium bicarbonate	GI side effects	The incidence of GI side effects was not drastically impacted by use of an oral alkalinizing drug

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
	receiving HDTMX (N = 102) (HDTMX cycles) Setting: hospital	Replacement: oral sodium bicarbonate and oral sodium citrate-citric acid		
		Vaccines		
Miyazato et al. (2023), ⁸ Japan	Study design: prospective cohort, uncontrolled Population: people at risk of yellow fever (N = 1,1279) Setting: community	Drug Class: live vaccine, viral Shortage: YF-Vax Replacement: alternative 17D-204 yellow fever vaccine (Stamaril)	Adverse events	The alternative vaccination was shown to be generally safe
			Serious adverse events	Three participants developed serious adverse events that may have been related to vaccination
Rojas et al. (2023), ⁹ US	Study design: prospective cohort, uncontrolled Population: people at high risk of yellow fever (N = 627,079) Setting: community	Drug class: live vaccine, viral Shortage: YF-Vax Replacement: Stamaril	Adverse events	No safety issues were identified
			Serious adverse events	Serious adverse events were very rare and consistent with the known safety profile
Wong et al. (2020), ¹² Australia	Study design: prospective cohort, uncontrolled Population: children (N = 6,779) Setting: community	Drug class: live vaccine, bacterial Shortage: Sanofi-Pasteur BCG strain Replacement: BCG-10 (derived from the Moreau strain)	Adverse events following immunization	BCG-10 had a similar safety profile to that reported for other BCG strains
Nzolo et al. (2018), ³⁸ DRC	Study design: retrospective cohort, uncontrolled Population: people receiving preventative fractional dose yellow	Drug class: live vaccine, viral Shortage: 17DD yellow fever vaccine, full dose	Adverse events following immunization	Fractional dose vaccination had an acceptable safety profile

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
	fever vaccination during an outbreak (N = 7,466,998)	Replacement: 17DD yellow fever vaccine, fractional dose		
	Setting: community			
			Serious adverse events following immunization	Serious adverse events were reported by 5 individuals
		Antimicrobials and adjuncts		
Haiduc et al. (2021), ²² US	Study design: retrospective cohort Population: adults in hospital with febrile neutropenia (N = 150) Setting: hospital	Drug class: cephalosporin Shortage: cefepime Replacement: cefepime (dose sparing)	Hospital LOS	No difference
			Mortality, all-cause, infection- related	No difference
Patel et al. (2020), ³¹ US	Study design: retrospective cohort Population: neonates (N = 101) Setting: neonatal ICU	Drug class: cephalosporin Shortage: cefotaxime Replacement: ceftazidime	Culture positive late-onset sepsis	Increased with the use of ceftazidime (NSS)
			Multidrug-resistant organism infection	Increased with the use of ceftazidime (NSS)
			Stage II to III necrotizing enterocolitis	Increased with the use of ceftazidime
			Urinary tract infection	No difference
			Mortality	No difference
			Hospital LOS	No difference
			Adverse events	No occurrences in either group
Landry et al. (2019), ³³ Canada	Study design: retrospective cohort Population: adults with uncomplicated cellulitis requiring IV therapy (N = 203) Setting: ED	Drug class: uricosuric drug Shortage: probenecid (in combination with IV cefazolin) Replacement: IV cefazolin only, continuous infusion	Recurrence (admission or ED visit for cellulitis within 30 days of treatment end)	No difference

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
			Adverse events: rash, nausea	No difference
		COVID-19		
Swets et al. (2023), ³⁹ the Netherlands	Study design: retrospective cohort Population: adults hospitalized for COVID-19 (N = 5,485) Setting: hospital	Drug class: monoclonal antibody (interleukin-6 inhibitor) Shortage: tocilizumab (IV) Replacement: tocilizumab (fixed dose and low dose); sarilumab	Mortality	 Lower survival with fixed- dose tocilizumab and sarilumab No difference in survival with low-dose tocilizumab
			Hospital LOS	Shorter LOS with low-dose tocilizumab and sarilumab No difference in LOS with fixed-dose tocilizumab
			ICU admission or mortality	Higher ICU admissions or death with fixed-dose tocilizumab, low-dose tocilizumab, and sarilumab
Stukas et al. (2022), ²⁰ Canada	Study design: retrospective cohort Population: adults with a diagnosis of pneumonia secondary to SARS-CoV-2 infection (N = 153) Setting: ICU	Drug class: monoclonal antibody (interleukin-6 inhibitor) Shortage: tocilizumab (IV), weight-based dose Replacement: tocilizumab (IV), fixed dose	Duration of mechanical ventilation	No difference
			ICU LOS	No difference
			Hospital LOS	No difference
			Mortality	Higher mortality in the fixed-dose group (NSS)
Lecronier et al. (2020), ²⁷ France	Study design: retrospective cohort Population: patients with severe SARS-CoV-2 pneumonia (N = 80) Setting: ICU	Drug class: protease inhibitor Shortage: lopinavir-ritonavir Replacement: hydroxychloroquinine	Treatment escalation: intubation, ECMO, RRT	No difference
			Mortality	No difference

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
			Safety and tolerance outcomes: neutropenia, anemia, thrombocytopenia, increased ASP and ALT, acute renal failure, prolonged QT interval	No difference
		Other		
Dannemiller et al. (2022), ¹⁶ US	Study design: retrospective cohort Population: adults undergoing cardiac surgery (N = 1,544) Setting: surgery	Drug class: antifibrinolytic drug Shortage: epsilon-aminocaproic acid Replacement: tranexamic acid	Safety events: mortality, cardiovascular, renal, seizure	No difference
Freeman et al. (2021), ²¹ US	Study design: retrospective cohort Population: adults who qualified for general or continuous renal replacement therapy electrolyte replacement protocol (N = 288) Setting: ICU	Drug class: electrolytes Shortage: IV electrolyte replacement products Replacement: enteral electrolyte replacement	ICU LOS	No difference
			Mortality	No difference
			Duration of mechanical ventilation	Decreased in the shortage period group
Neto et al. (2021), ²³ Brazil	Study design: retrospective cohort, uncontrolled Population: patients with atypical hemolytic uremic syndrome (N = 24) Setting: dialysis clinic	Drug class: monoclonal antibody Shortage: eculizumab Replacement: None	Disease relapse	Increased after unplanned eculizumab interruption
McAlister and Youngson (2020), ³⁰ Canada	Study design: retrospective cohort, uncontrolled Population: adults dispensed any of the recalled valsartan products	Drug class: angiotensin receptor blocker Shortage: generic valsartan Replacement: alternative angiotensin receptor blocker; brand name valsartan	Outpatient visits	Increased immediately after generic valsartan recall

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
	(N = 34,726) Setting: community			
			ED visits	Increased immediately after generic valsartan recall (older patients only)
			ED visits, hospitalizations for stroke or TIA	No difference
van Langenberg et al. (2020),11 Australia	Study design: prospective cohort Population: people with mild to moderate ulcerative colitis (N = 31) Setting: outpatient	Drug class: 5-ASA Shortage: balsalazide Replacement: alternative 5-ASA formulations (e.g., multimatrix mesalazine)	Clinical activity	Higher than expected proportion of patients with worsening disease with alternative 5-ASA
			Adverse events	Higher than expected proportion of patients with significant side effects with alternative 5-ASA
			Remission	No difference
			Treatment escalation	No difference
			Mortality	No difference
			Flares requiring hospitalization	Increased with alternative 5-ASA
Yang et al. (2020), ³² US	Study design: retrospective cohort Population: adult patients with hyperkalemia receiving IV insulin (N = 134) Setting: ED	Drug class: glucose-elevating drug Shortage: dextrose 50% Replacement: dextrose 10%	Symptomatic hypoglycemia	Lower incidence in the dextrose 10% group (NSS)
			Adverse events, including extravasation	No occurrences in either group

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
		Non-drug		
Acadamia et al. (2022), ¹⁵ US	Study design: retrospective cohort Population: adults (N = 696) Setting: ED	Drug class: small-volume parenteral solutions Shortage: IV piggyback administration of penicillins and carbapenems Replacement: IV push administration of penicillins and carbapenems	Drug-related adverse events	No difference
			Mortality	No difference
Tschumper et al. (2021), ²⁴ US	Study design: retrospective cohort Population: adults (N = 90) Setting: hospital	Drug class: small-volume parenteral solutions Shortage: prolonged infusion (4 hour) of piperacillin- tazaobactam Replacement: continuous infusion of piperacillin- tazobactam	Hospital LOS	No difference
			Mortality	No difference
			Safety: thrombocytopenia	Higher incidence with continuous infusion (NSS)
			Safety: <i>Clostridioides difficile</i> infection, acute renal failure	No difference
			Safety: seizure	No occurrences in either group
			Readmission	Fewer readmissions with continuous infusion (NSS)
Blair and Covington (2020), ²⁵ US	Study design: retrospective cohort, uncontrolled Population: adults (N = 120) Setting: hospital	Drug class: small-volume parenteral solutions Shortage: 4-hour extended infusion of piperacillin	Acute kidney injury	Incidence with continuous infusion similar to previously reported results with extended infusion

Study citation, location	Study characteristics	Drug characteristics	Relevant outcomes	Outcome results
		tazobactam Replacement : continuous infusion of piperacillin- tazobactam		
Marsh et al. (2020), ²⁹ US	Study design: retrospective cohort, uncontrolled Population: adults (N = 1,000) Setting: hospital	Drug class: small-volume parenteral solutions Shortage: IV piggyback administration of beta-lactam antibiotics Replacement: IV push administration of beta-lactam antibiotics	Adverse events	Safety of IV push administration similar to previously reported results with IV piggyback administration

5-ASA = 5-aminosalicylate; ADR = adverse drug reaction; ALT = alanine aminotransferase; AST = aspartate aminotransferase; BCG = Bacillus Calmette-Guérin; DRC = Democratic Republic of the Congo; ECMO = extracorporeal membrane oxygenation; ED = emergency department; GI = gastrointestinal; H1A = histamine-1 antagonist; H2A = histamine-2 antagonists; HDTMX = high-dose methotrexate; ICU = intensive care unit; LOS = length of stay; NSS = not statistically significant; PACU = post-anesthetic care unit; RRT = renal replacement therapy; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; TIA = transient ischemic attack.

Conclusions

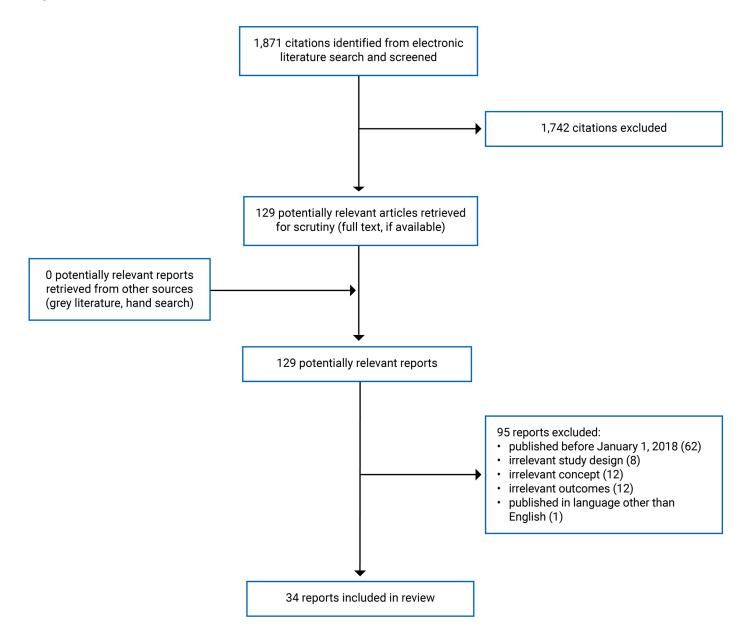
The development of a preventive approach could possibly help mitigate the impacts of drug shortages. To achieve this, first, drugs that are potentially the highest impact need to be identified. Anticipating which drugs are likely to be most impactful during a shortage involves identifying those most at risk of supply chain disruptions and those most likely to cause patient harm. Ranking drugs based on their risk of shortage and their risk of harm during a shortage can help decision-makers put into place pre-emptive strategies. This report supports this objective by summarizing types of harms that may occur during drug shortages, and, although not the primary intent of this report, by identifying the types of drugs experiencing shortages studied in the literature. Most of the published trials examined the effectiveness and safety of alternative drugs during drug shortages. The harms outcomes that were most frequently reported were adverse events or safety-related outcomes and health system use, including length of stay, mortality, and disease progression. Similarly, a French registry study described the types of adverse drug reactions related to drug shortages as reported to a pharmacovigilance database.⁷ The authors described harms from adverse drug reactions; serious adverse drug reactions, including hospitalization, life-threatening events, or death; and disease progression.⁷ The primary studies that concluded that the examined drug shortage had negative consequences reported health system use, adverse events, disease progression, and mortality as harms outcomes. 11,19,23,31,37,39

This report summarizes the available evidence on the effect of drug shortages on patient outcomes and will be used in combination with other CADTH work to support future decision-making regarding drug shortages, including:

- an environmental scan of existing clinical tools or scoring systems available for drug shortage or supply chain disruptions
- facilitation of a Delphi panel to support the identification of high-priority drugs based on their supply chain risk and clinical risk.

References

- 1. Drug Shortages in Canada. Ottawa (ON): Health Canada; 2023: <u>https://www.canada.ca/content/dam/hc-sc/documents/</u> <u>services/drugs-health-products/drug-products/drug-shortages/2022-2023-review/2022-2023-review-en.pdf</u>. Accessed 2023 Nov 9.
- 2. Protocol for the Notification and Communication of Drug Shortages. Drug Shortages Canada; 2017: <u>https://www</u>.<u>.drugshortagescanada.ca/files/MSSC_Protocol_2017.pdf</u>. Accessed 2023 Nov 9.
- 3. A Toolkit for Improved Understanding and Transparency of Drug Shortage Response in Canada. Drug Shortages Canada; 2017: https://www.drugshortagescanada.ca/files/MSSC_Toolkit_2017.pdf. Accessed 2023 Nov 9.
- 4. Aronson JK, Heneghan C, Ferner RE. Drug shortages. Part 1. Definitions and harms. Br J Clin Pharmacol. 2023;16:16. PubMed
- 5. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Syst.* 2021;10(1):89. PubMed
- 6. Phuong JM, Penm J, Chaar B, Oldfield LD, Moles R. The impacts of medication shortages on patient outcomes: A scoping review. *PLoS ONE*. 2019;14(5):e0215837. <u>PubMed</u>
- 7. Bourneau-Martin D, Babin M, Grandvuillemin A, et al. Adverse drug reaction related to drug shortage: A retrospective study on the French National Pharmacovigilance Database. Br J Clin Pharmacol. 2023;89(3):1080-1088. PubMed
- 8. Miyazato Y, Terada M, Ujiie M, et al. A nationwide prospective cohort study on safety of the 17D-204 yellow fever vaccine during a vaccine shortage in Japan. *J Travel Med.* 2023;30(2):05.
- 9. Rojas A, Hachey W, Kaur G, Korejwo J, Muhammad R. Enhanced safety surveillance of STAMARIL R yellow fever vaccine provided under the expanded access investigational new drug program in the United States. *J Travel Med.* 2023;31:31. PubMed
- Cole JB, Stang JL, DeVries PA, Martel ML, Miner JR, Driver BE. A Prospective Study of Intramuscular Droperidol or Olanzapine for Acute Agitation in the Emergency Department: A Natural Experiment Owing to Drug Shortages. Ann Emerg Med. 2021;78(2):274-286. <u>PubMed</u>
- 11. van Langenberg DR, Cheng RK, Garg M. Outcomes of a drug shortage requiring switching in patients with ulcerative colitis. *World J Gastrointest Pathophysiol.* 2020;11(2):32-42. <u>PubMed</u>
- 12. Wong NX, Buttery J, McMinn A, Azhar Z, Crawford NW. Safety of the Polish BCG-10 Vaccine During a Period of BCG Vaccine Shortage: An Australian Experience. *Pediatr Infect Dis J.* 2020;39(6):e66-e68. <u>PubMed</u>
- Lachance S, Bourguignon A, Boisjoly JA, et al. Impact of Implementing a Bendamustine-Based Conditioning Regimen on Outcomes of Autologous Stem Cell Transplantation in Lymphoma while Novel Cellular Therapies Emerge. *Transplant Cell Ther.* 2023;29(1):34.e31-34.e37. <u>PubMed</u>
- Strobbe G, Gaboriau L, Abele M, et al. Impact of histamine-2 antagonist shortage on the incidence of hypersensitivity reactions to paclitaxel: a reconsideration of premedication protocols in France (PACLIREACT Study). Eur J Clin Pharmacol. 2023;79(9):1229-1238. <u>PubMed</u>
- 15. Academia EC, Jenrette JE, Mueller SW, McLaughlin JM. Evaluation of First-Dose, Intravenous Push Penicillins and Carbapenems in the Emergency Department. *J Pharm Pract.* 2022;35(3):369-376. <u>PubMed</u>
- 16. Dannemiller RE, Knowles DM, Cook BM, Goodberlet MZ, Kelly JM, Malloy R. Comparison of trauma-dosed tranexamic acid versus aminocaproic acid in cardiac surgery in the setting of drug shortage. *J Card Surg*. 2022;37(10):3243-3249. <u>PubMed</u>
- 17. John K, Cape K, Goodman L, Elefritz J. Impact of the Injectable Opioid Drug Shortage on Analgesia and Sedation Management in the Medical Intensive Care Unit: A Retrospective Cohort Study. *Hosp Pharm.* 2022;57(1):160-166. <u>PubMed</u>
- Katsivalis KV, Kosacz J, Austin Szwak J. Opioid Use in Vaso-Occlusive Crisis During Intravenous Opioid Drug Shortage. Hosp Pharm. 2022;57(6):721-726. <u>PubMed</u>
- Rodriguez-Monguio R, Lun Z, Bongiovanni T, Chen CL, Seoane-Vazquez E. Postoperative Respiratory Events in Surgical Patients Exposed to Opioid Analgesic Shortages Compared to Fully Matched Patients Non-exposed to Shortages. *Drug Saf.* 2022;45(4):359-367. <u>PubMed</u>



- 20. Stukas S, Goshua G, Kinkade A, et al. Reduced fixed dose tocilizumab 400 mg IV compared to weight-based dosing in critically ill patients with COVID-19: A before-after cohort study. *Lancet Reg Health Am*. 2022;11:100228. PubMed
- 21. Freeman L, Newsome AS, Huang E, Rowe E, Waller J, Forehand CC. Assessment of Electrolyte Replacement in Critically III Patients During a Drug Shortage. *Hosp Pharm.* 2021;56(4):296-301. <u>PubMed</u>
- 22. Haiduc M, Patel M, Walsh TL, Moffa MA, Bremmer DN. Impact of a cefepime shortage on dosing regimens and outcomes in hospitalized adults with febrile neutropenia. *J Oncol Pharm Pract.* 2021;27(2):297-304. <u>PubMed</u>
- 23. Neto ME, de Moraes Soler L, Vasconcelos HVG, et al. Eculizumab interruption in atypical hemolytic uremic syndrome due to shortage: analysis of a Brazilian cohort. *J Nephrol.* 2021;34(4):1373-1380. PubMed
- 24. Tschumper E, Dupuis K, McCrory K, Pitts W. Evaluation of Prolonged Versus Continuous Infusions of Piperacillin/Tazobactam During Shortages of Small Volume Parenteral Solutions. *J Pharm Technol*. 2021;37(6):271-277. <u>PubMed</u>
- Blair K, Covington EW. Incidence and Risk Factors of Acute Kidney Injury in Patients Receiving Concomitant Vancomycin and Continuous-Infusion Piperacillin/Tazobactam: A Retrospective Cohort Study. Ann Pharmacother. 2020;54(11):1096-1101. <u>PubMed</u>
- 26. Farrell NM, Killius K, Kue R, Langlois BK, Nelson KP, Golenia P. A Comparison of Etomidate, Ketamine, and Methohexital in Emergency Department Rapid Sequence Intubation. *J Emerg Med.* 2020;59(4):508-514. <u>PubMed</u>
- 27. Lecronier M, Beurton A, Burrel S, et al. Comparison of hydroxychloroquine, lopinavir/ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis. *Crit Care*. 2020;24(1):418. <u>PubMed</u>
- 28. Li H, Cimino SK. Clinical impact of the etoposide injection shortage. J Oncol Pharm Pract. 2020;26(1):187-192. PubMed
- 29. Marsh K, Ahmed N, Decano A, et al. Safety of intravenous push administration of beta-lactams within a healthcare system. *Am J Health-Syst Pharm*. 2020;77(9):701-708. PubMed
- McAlister FA, Youngson E. Impact of the Generic Valsartan Recall in Alberta, Canada. J Am Coll Cardiol. 2020;75(15):1860-1862. <u>PubMed</u>
- 31. Patel PD, Bhagat P, Bartlett AH, Bondi DS. Comparison of Neonatal Outcomes With the Use Cefotaxime Versus Ceftazidime in a Neonatal Intensive Care Unit. *The Journal of Pediatric Pharmacology & Therapeutics*. 2020;25(2):117-123. <u>PubMed</u>
- 32. Yang I, Smalley S, Ahuja T, Merchan C, Smith SW, Papadopoulos J. Assessment of dextrose 50 bolus versus dextrose 10 infusion in the management of hyperkalemia in the ED. *Am J Emerg Med.* 2020;38(3):598-602. PubMed
- 33. Landry DL, Eltonsy S, Jalbert LP, Girouard G, Couture J, Belanger M. Continuous cefazolin infusion versus cefazolin plus probenecid for the ambulatory treatment of uncomplicated cellulitis: A retrospective cohort study. J Assoc Med Microbiol Infect Dis Can. 2019;4(2):108-112. PubMed
- 34. Nelson AC, Kehoe J, Sankoff J, Mintzer D, Taub J, Kaucher KA. Benzodiazepines vs barbiturates for alcohol withdrawal: Analysis of 3 different treatment protocols. *Am J Emerg Med*. 2019;37(4):733-736. PubMed
- Roy AM, Lei M, Lou U. Safety and efficacy of a urine alkalinization protocol developed for high-dose methotrexate patients during intravenous bicarbonate shortage. J Oncol Pharm Pract. 2019;25(8):1860-1866. <u>PubMed</u>
- Visage R, Kaiser N, Williams M, Kim A. Oral Methods of Urinary Alkalinization for High-dose Methotrexate Administration: Alternatives to Intravenous Sodium Bicarbonate During a Critical Drug Shortage. J Pediatr Hematol Oncol. 2019;41(5):371-375. <u>PubMed</u>
- 37. Neff MP, Wagner D, Phillips BJ, et al. Propofol Drug Shortage Associated With Worse Postoperative Nausea and Vomiting Outcomes Despite a Mitigation Strategy. *Aana J.* 2018;86(2):147-154. <u>PubMed</u>
- Nzolo D, Engo Biongo A, Kuemmerle A, et al. Safety profile of fractional dosing of the 17DD Yellow Fever Vaccine among males and females: Experience of a community-based pharmacovigilance in Kinshasa, DR Congo. Vaccine. 2018;36(41):6170-6182. <u>PubMed</u>
- 39. Swets MC, Moss RJ, Kor F, et al. A comparison of the effectiveness of different doses of tocilizumab and sarilumab in the treatment of severe COVID-19: a natural experiment due to drug shortages. *Int J Infect Dis.* 2023;129:57-62. <u>PubMed</u>

Appendix 1: Selection of Included Studies

Figure 1: Selection of Included Studies

Appendix 2: References of Potential Interest

Scoping Reviews

Unclear Outcomes

Tucker EL, Cao Y, Fox ER, Sweet BV. The Drug Shortage Era: A Scoping Review of the Literature 2001-2019. *Clin Pharmacol Ther*. 2020;108(6):1150-1155. <u>PubMed</u>

Nonrandomized Studies

Not Direct Patient Harm Outcomes

- Chun B, He M, Jones C, et al. Variation in Statewide Intravesical Treatment Rates for Non-Muscle Invasive Bladder Cancer During the Bacillus Calmette-Guerin Drug Shortage. *Urology*. 2023;177():74-80.
- N'Kaoua E, Attarian S, Delmont E, et al. Immunoglobulin shortage: Practice modifications and clinical outcomes in a reference centre. *Rev Neurol (Paris)*. 2022;178(6):616-623. <u>PubMed</u>
- Zhang B, Yeh DD, Ortiz-Reyes LA, Chang Y, Quraishi SA. Impact of nationwide essential trace element shortages: A before-after, single-center analysis of hospitalized adults receiving home parenteral nutrition therapy. *Nutr Clin Pract*. 2022;37(2):442-450. PubMed
- Martei YM, Grover S, Bilker WB, et al. Impact of Essential Medicine Stock Outs on Cancer Therapy Delivery in a Resource-Limited Setting. J Global Oncol. 2019;5():1-11.
- Hedlund NG, Isgor Z, Zwanziger J, et al. Drug Shortage Impacts Patient Receipt of Induction Treatment. *Health Serv Res.* 2018;53(6):5078-5105. PubMed

Additional References

Potentially Relevant Studies Published Before January 1, 2018

- Alhogbani MM, Picard JA, Fassi-Fehri MH, Badet JL, Colombel CM. Prognostic impact of Bacillus Calmette-Guerin interruption at the time of induction and consolidation. *Urol Ann*. 2017;9(4):315-320. PubMed
- Gross AE, Johannes RS, Gupta V, Tabak YP, Srinivasan A, Bleasdale SC. The Effect of a Piperacillin/Tazobactam Shortage on Antimicrobial Prescribing and Clostridium difficile Risk in 88 US Medical Centers. *Clin Infect Dis.* 2017;65(4):613-618. <u>PubMed</u>
- Howard J, Wigley J, Rosen G, D'Mello J. Glycopyrrolate: It's time to review. J Clin Anesth. 2017;36():51-53.
- Hsueh K, Reyes M, Krekel T, et al. Effective Antibiotic Conservation by Emergency Antimicrobial Stewardship During a Drug Shortage. Infect Control Hosp Epidemiol. 2017;38(3):356-359. <u>PubMed</u>
- McLaughlin MM, Sutton SH, Jensen AO, Esterly JS. Use of High-Dose Oral Valacyclovir During an Intravenous Acyclovir Shortage: A Retrospective Analysis of Tolerability and Drug Shortage Management. *Infect*. 2017;6(2):259-264. PubMed
- Vail E, Gershengorn HB, Hua M, Walkey AJ, Rubenfeld G, Wunsch H. Association Between US Norepinephrine Shortage and Mortality Among Patients With Septic Shock. JAMA. 2017;317(14):1433-1442. <u>PubMed</u>
- VanderWeide LA, Abdel-Rasoul M, Gerlach AT. The Incidence of hypotension with continuous infusion atracurium compared to cisatracurium in the Intensive Care Unit. *Int J Crit IIIn Inj Sci.* 2017;7(2):113-118. <u>PubMed</u>
- Barber KE, Bell AM, Travis King S, Parham JJ, Stover KR. Impact of piperacillin-tazobactam shortage on meropenem use: implications for antimicrobial stewardship programs. *Braz J Infect Dis*. 2016;20(6):631-634. <u>PubMed</u>
- Blaine KP, Press C, Lau K, Sliwa J, Rao VK, Hill C. Comparative effectiveness of epsilon-aminocaproic acid and tranexamic acid on postoperative bleeding following cardiac surgery during a national medication shortage. J Clin Anesth. 2016;35():516-523.
- Cho S, Bales J, Tran TK, Korab G, Khandelwal N, Joffe AM. Effects of 14 Versus 21 Days of Nimodipine Therapy on Neurological Outcomes in Aneurysmal Subarachnoid Hemorrhage Patients. *Ann Pharmacother*. 2016;50(9):718-24. <u>PubMed</u>

- Dotson B, Larabell P, Patel JU, et al. Calcium Administration Is Associated with Adverse Outcomes in Critically III Patients Receiving Parenteral Nutrition: Results from a Natural Experiment Created by a Calcium Gluconate Shortage. *Pharmacotherapy*. 2016;36(11):1185-1190. <u>PubMed</u>
- Duan F, Wang EQ, Lam MG, et al. Superselective Chemoembolization of HCC: Comparison of Short-term Safety and Efficacy between Drug-eluting LC Beads, QuadraSpheres, and Conventional Ethiodized Oil Emulsion. *Radiology*. 2016;278(2):612-21. <u>PubMed</u>
- Gawronski CA, Gawronski KM. Vitamin A Supplementation for Prevention of Bronchopulmonary Dysplasia: Cornerstone of Care or Futile Therapy?. Ann Pharmacother. 2016;50(8):680-4. PubMed
- Kesteman T, Rafalimanantsoa SA, Razafimandimby H, et al. Multiple causes of an unexpected malaria outbreak in a hightransmission area in Madagascar. *Malar J*. 2016;15():57.
- Malone C, Acheson JR, Hinds JD, McComiskey MH. Uterotonics for Non-emergent Caesarean Section: Protocol Change During UK-Licensed Drug Shortage. Ulster Med J. 2016;85(3):174-177. PubMed
- Reed BN, Fox ER, Konig M, et al. The impact of drug shortages on patients with cardiovascular disease: causes, consequences, and a call to action. Am Heart J. 2016;175():130-41.
- Storey MA, Weber RJ, Besco K, Beatty S, Aizawa K, Mirtallo JM. Evaluation of Parenteral Nutrition Errors in an Era of Drug Shortages. Nutr Clin Pract. 2016;31(2):211-7. PubMed
- Chhim RF, Crill CM. Premixed Parenteral Nutrition Solution Use in Children. *Journal Pediatr Pharmacol Ther*. 2015;20(5):378-84. <u>PubMed</u>
- Clothier HJ, Hosking L, Crawford NW, et al. Bacillus Calmette-Guerin (BCG) vaccine adverse events in Victoria, Australia: analysis of reports to an enhanced passive surveillance system. *Drug Saf.* 2015;38(1):79-86. <u>PubMed</u>
- Hughes KM, Goswami ES, Morris JL. Impact of a Drug Shortage on Medication Errors and Clinical Outcomes in the Pediatric Intensive Care Unit. Journal Pediatr Pharmacol Ther. 2015;20(6):453-61. PubMed
- Ladha KS, Nanji KC, Pierce E, Poon KT, Hyder JA. The Impact of a Shortage of Pharmacy-Prepared Ephedrine Syringes on Intraoperative Medication Use. Anesth Analg. 2015;121(2):404-9. PubMed
- Romito B, Stone J, Ning N, et al. How Drug Shortages Affect Clinical Care: The Case of the Surgical Anesthetic Propofol. *Hosp Pharm*. 2015;50(9):798-805. PubMed
- Shah S, Theodossiades J, Chapman K, Murdoch I. Impact of supply problems of preservative-free glaucoma medications on patients and hospital staff. *Ophthalmic Physiol Opt.* 2015;35(2):236-41. <u>PubMed</u>
- Shahabi S, Fazlalizadeh H, Stedman J, Chuang L, Shariftabrizi A, Ram R. The impact of international economic sanctions on Iranian cancer healthcare. *Health Policy (New York)*. 2015;119(10):1309-18. <u>PubMed</u>
- Van Berkel MA, Fuller LA, Alexandrov AW, Jones GM. Methylene blue, midodrine, and pseudoephedrine: a review of alternative agents for refractory hypotension in the intensive care unit. *Crit Care Nurs Q.* 2015;38(4):345-58. <u>PubMed</u>
- Anger KE, Belisle C, Colwell MB, et al. Safety of compounded calcium chloride admixtures for peripheral intravenous administration in the setting of a calcium gluconate shortage. J Pharm Pract. 2014;27(5):474-7. PubMed
- Berger JL, Smith A, Zorn KK, et al. Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era. *Onco Targets Ther.* 2014;7():1409-13.
- Bible JR, Evans DC, Payne B, Mostafavifar L. Impact of drug shortages on patients receiving parenteral nutrition after laparotomy. JPEN J Parenter Enteral Nutr. 2014;38(2 Suppl):65S-71S. PubMed
- Davis C, Javid PJ, Horslen S. Selenium deficiency in pediatric patients with intestinal failure as a consequence of drug shortage. JPEN J Parenter Enteral Nutr. 2014;38(1):115-8. PubMed
- Dill S, Ahn J. Drug shortages in developed countries--reasons, therapeutic consequences, and handling. *Eur J Clin Pharmacol.* 2014;70(12):1405-12. <u>PubMed</u>
- Dilworth TJ, Ibrahim OM, Mercier RC. Impact of an intravenous trimethoprim/sulfamethoxazole shortage on treatment outcomes among HIV-infected patients with Pneumocystis jirovecii pneumonia. J Manag Care Spec Pharm. 2014;20(12):1246-54. PubMed

- Mazer-Amirshahi M, Pourmand A, Singer S, Pines JM, van den Anker J. Critical drug shortages: implications for emergency medicine. Acad Emerg Med. 2014;21(6):704-11. PubMed
- Miller JL, Thomas AN, Johnson PN. Use of continuous-infusion loop diuretics in critically ill children. *Pharmacotherapy*. 2014;34(8):858-67. <u>PubMed</u>
- Morgan KP, Snavely AC, Wind LS, et al. Rates of Renal Toxicity in Cancer Patients Receiving Cisplatin With and Without Mannitol. Ann Pharmacother. 2014;48(7):863-869. PubMed
- Nickel RS, Keller F, Bergsagel J, et al. Mitoxantrone as a substitute for daunorubicin during induction in newly diagnosed lymphoblastic leukemia and lymphoma. *Pediatr Blood Cancer*. 2014;61(5):810-4. <u>PubMed</u>
- Stollings JL, Diedrich DA, Oyen LJ, Brown DR. Rapid-sequence intubation: a review of the process and considerations when choosing medications. *Ann Pharmacother*. 2014;48(1):62-76. PubMed
- Thoma BN, Li J, McDaniel CM, Wordell CJ, Cavarocchi N, Pizzi LT. Clinical and economic impact of substituting dexmedetomidine for propofol due to a US drug shortage: examination of coronary artery bypass graft patients at an urban medical centre. *Pharmacoeconomics*. 2014;32(2):149-57. <u>PubMed</u>
- Tolia VN, Murthy K, McKinley PS, Bennett MM, Clark RH. The effect of the national shortage of vitamin A on death or chronic lung disease in extremely low-birth-weight infants. *JAMA, Pediatr.* 2014;168(11):1039-44. <u>PubMed</u>
- Wiggins BS, Nappi J, Fortier CR, Taber DJ. Cardiovascular Drug Shortages: Predominant Etiologies, Clinical Implications, and Management Strategies. Ann Pharmacother. 2014;48(9):1177-1186. PubMed
- Krisl JC, Fortier CR, Taber DJ. Disruptions in the supply of medications used in transplantation: implications and management strategies for the transplant clinician. *Am J Transplant*. 2013;13(1):20-30. PubMed
- Nappi JM. A retrospective evaluation of the efficacy of intravenous bumetanide and comparison of potency with furosemide. *Pharm Pract.* 2013;11(1):44-50. <u>PubMed</u>
- Neavyn MJ, Boyer EW, Bird SB, Babu KM. Sodium acetate as a replacement for sodium bicarbonate in medical toxicology: a review. J Med Toxicol. 2013;9(3):250-4. PubMed
- Price B, Arthur AO, Brunko M, et al. Hemodynamic consequences of ketamine vs etomidate for endotracheal intubation in the air medical setting. *Am J Emerg Med*. 2013;31(7):1124-32. <u>PubMed</u>
- Rider AE, Templet DJ, Daley MJ, Shuman C, Smith LV. Clinical dilemmas and a review of strategies to manage drug shortages. J Pharm Pract. 2013;26(3):183-91. PubMed
- Trifilio S, Zhou Z, Mehta J, et al. Idarubicin appears equivalent to dose-intense daunorubicin for remission induction in patients with acute myeloid leukemia. *Leuk Res.* 2013;37(8):868-71. PubMed
- Briere EC, Jackson M, Shah SG, et al. Haemophilus influenzae type b disease and vaccine booster dose deferral, United States, 1998-2009. Pediatrics. 2012;130(3):414-20. PubMed
- Golembiewski J. Drug shortages in the perioperative setting: causes, impact, and strategies. *J Perianesth Nurs*. 2012;27(4):286-92. <u>PubMed</u>
- Ipema HJ. Use of oral vitamin K for prevention of late vitamin k deficiency bleeding in neonates when injectable vitamin K is not available. *Ann Pharmacother*. 2012;46(6):879-83. <u>PubMed</u>
- Kwak GY, Kwon HJ, Kim JH, et al. The immunogenicity and safety of DTaP interchangeable immunization among Korean children. *Vaccine*. 2012;30(31):4644-7. <u>PubMed</u>
- Lowther SA, Shinoda N, Juni BA, et al. Haemophilus influenzae type b infection, vaccination, and H. influenzae carriage in children in Minnesota, 2008-2009. *Epidemiol Infect*. 2012;140(3):566-74. PubMed
- Metzger ML, Billett A, Link MP. The impact of drug shortages on children with cancer--the example of mechlorethamine. *N Engl J Med.* 2012;367(26):2461-3. PubMed
- Ralls MW, Blackwood RA, Arnold MA, Partipilo ML, Dimond J, Teitelbaum DH. Drug shortage-associated increase in catheter-related blood stream infection in children. *Pediatrics*. 2012;130(5):e1369-73. <u>PubMed</u>

- Goldblatt J, Fletcher JM, McGill J, Szer J, Wilson M. Enzyme replacement therapy "drug holiday": results from an unexpected shortage of an orphan drug supply in Australia. *Blood Cells Mol Dis*. 2011;46(1):107-10. <u>PubMed</u>
- Johnson PN, Miller J, Gormley AK. Continuous-infusion neuromuscular blocking agents in critically ill neonates and children. *Pharmacotherapy*. 2011;31(6):609-20. <u>PubMed</u>
- Kranzer K, Ford N. Unstructured treatment interruption of antiretroviral therapy in clinical practice: a systematic review. *Trop Med Int Health*. 2011;16(10):1297-313. PubMed
- Thomas JD, Jackson ML, Sharma D, et al. Haemophilus influenzae type b carriage among young children in metropolitan Atlanta in the context of vaccine shortage and booster dose deferral. *Clin Vaccine Immunol*. 2011;18(12):2178-80. <u>PubMed</u>
- Jo YM, Song JY, Hwang IS, et al. Dose sparing strategy with intradermal influenza vaccination in patients with solid cancer. *J Med Virol*. 2009;81(4):722-7. PubMed
- Anonymous. Continued shortage of Haemophilus influenzae Type b (Hib) conjugate vaccines and potential implications for Hib surveillance--United States, 2008. MMWR Morb Mortal Wkly Rep. 2008;57(46):1252-5. PubMed
- Hrynash Y, Nadraga A, Dasho M. Effectiveness of a vaccination program against mumps in Ukraine. *Eur J Clin Microbiol Infect Dis*. 2008;27(12):1171-6. <u>PubMed</u>
- Abuelreish M, Subedar A, Chiu T, Wludyka P, Rathore M. Increase in invasive pneumococcal disease in children associated with shortage of heptavalent pneumococcal conjugate vaccine. *Clin Pediatr (Phila)*. 2007;46(1):45-52. <u>PubMed</u>
- Sheth HS, Verrico MM, Skledar SJ, Towers AL. Promethazine adverse events after implementation of a medication shortage interchange. *Ann Pharmacother*. 2005;39(2):255-61. <u>PubMed</u>
- Kiromat M, Vince JD, Oswyn G, Tefuarani N. The management of children with cancer in Papua New Guinea: a review of children with cancer at Port Moresby General Hospital. *P N G Med J.* 2004;47(3-4):138-45. <u>PubMed</u>

ISSN: 2563-6596

Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policymakers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services.

While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up to date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. The views and opinions of third parties published in this document do not necessarily state or reflect those of CADTH.

CADTH is not responsible for any errors, omissions, injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the contents of this document or any of the source materials.

This document may contain links to third-party websites. CADTH does not have control over the content of such sites. Use of third-party sites is governed by the third-party website owners' own terms and conditions set out for such sites. CADTH does not make any guarantee with respect to any information contained on such third-party sites and CADTH is not responsible for any injury, loss, or damage suffered as a result of using such third-party sites. CADTH has no responsibility for the collection, use, and disclosure of personal information by third-party sites.

Subject to the aforementioned limitations, the views expressed herein do not necessarily reflect the views of Health Canada, Canada's provincial or territorial governments, other CADTH funders, or any third-party supplier of information.

This document is prepared and intended for use in the context of the Canadian health care system. The use of this document outside of Canada is done so at the user's own risk.

This disclaimer and any questions or matters of any nature arising from or relating to the content or use (or misuse) of this document will be governed by and interpreted in accordance with the laws of the Province of Ontario and the laws of Canada applicable therein, and all proceedings shall be subject to the exclusive jurisdiction of the courts of the Province of Ontario, Canada.

The copyright and other intellectual property rights in this document are owned by CADTH and its licensors. These rights are protected by the Canadian *Copyright Act* and other national and international laws and agreements. Users are permitted to make copies of this document for non-commercial purposes only, provided it is not modified when reproduced and appropriate credit is given to CADTH and its licensors.

About CADTH: CADTH is an independent, not-for-profit organization responsible for providing Canada's health care decision-makers with objective evidence to help make informed decisions about the optimal use of drugs, medical devices, diagnostics, and procedures in our health care system.

Funding: CADTH receives funding from Canada's federal, provincial, and territorial governments, with the exception of Quebec.

Questions or requests for information about this report can be directed to requests@cadth.ca